Title
Tomography-based overlay network monitoring
Abstract
Overlay network monitoring enables distributed Internet applications to detect and recover from path outages and periods of degraded performance within seconds. For an overlay network with n end hosts, existing systems either require O(n2) measurements, and thus lack scalability, or can only estimate the latency but not congestion or failures. Unlike other network tomography systems, we characterize end-to-end losses (this extends to any additive metrics, including latency) rather than individual link losses. We find a minimal basis set of k linearly independent paths that can fully describe all the O(n,2) paths. We selectively monitor and measure the loss rates of these paths, then apply them to estimate the loss rates of all other paths. By extensively studying synthetic and real topologies, we find that for reasonably large n (e.g., 100), k is only in the range of O(n log n). This is explained by the moderately hierarchical nature of Internet routine.Our scheme only assumes the knowledge of underlying IP topology, and any link can become lossy or return to normal. In addition, our technique is tolerant to topology measurement inaccuracies, and is adaptive to topology changes.
Year
DOI
Venue
2003
10.1145/948205.948233
Internet Measurement Comference
Keywords
DocType
ISBN
internet application,overlay network monitoring,n end host,tomography-based overlay network monitoring,loss rate,overlay network,ip topology,network tomography system,n log n,real topology,large n,overlay networks,numerical linear algebra,network tomography
Conference
1-58113-773-7
Citations 
PageRank 
References 
34
1.69
16
Authors
3
Name
Order
Citations
PageRank
Yan Chen13842220.64
David Bindel242729.24
Randy H. Katz3168193018.89