Title
Ultra-fast quantum-well saturable absorber devices and their application to all-optical regeneration of telecommunication optical signals
Abstract
We review recent advances in the investigation of vertical cavity saturable absorber devices and their use for the all-optical regeneration of telecommunication signals in ultra-long-haul transmission systems. Such devices are polarization-insensitive and operate as fully passive nonlinear optical elements. Two approaches for obtaining fast recovery absorber materials are described, relying upon ion irradiation or upon iron doping. The vertical micro-cavity devices are designed so as to optimize the switching contrast and the operating power. Their functional behaviour as extinction ratio amplifiers has been characterized and their optimal operating conditions have been determined. The potential application of these devices to all-optical regeneration has been investigated through numerical simulations and fully demonstrated in several long-distance transmission loop experiments, with results obtained at 10, 20 and 40 Gbit/s, showing significant improvements in system haul or operational margins. A four-channel fibered module has also been fabricated, as a perspective towards the development of wavelength division multiplexing (WDM) saturable absorber modules.
Year
DOI
Venue
2003
10.1007/BF03001222
Annales des Télécommunications
Keywords
Field
DocType
extinction ratio,numerical simulation,saturable absorber,nonlinear optics,quantum well,operant conditioning,iron
Wavelength-division multiplexing,Extinction ratio,Telecommunications,Optical communication,Saturable absorption,Optics,Electronic engineering,Transmission system,Semiconductor device,Quantum well,Mathematics,Amplifier
Journal
Volume
Issue
ISSN
58
11-12
1958-9395
Citations 
PageRank 
References 
0
0.34
0
Authors
7