Title
DAMson: On distributed sensing scheduling to achieve high Quality of Monitoring
Abstract
Wireless Sensor Networks (WSN) are widely adopted to monitor and collect data, such as temperature, humidity etc., from the physical environment. Those sensor readings often exhibit strong spacial-temporal correlations, e.g., sensor readings from nearby sensors tend to be similar, and sensor readings from consecutive time slots are also highly correlated. As in our previous works, we first introduce the concept of Quality of Monitoring (QoM), and further define an utility function to quantify the QoM under different sensing schedules. In particular, the utility function is non-decreasing submodular function which is able to capture the spacial-temporal correlations among sensor readings. The objective of this work is to develop a set of distributed sensing schedules in order to achieve the highest QoM subject to energy constraint (e.g., under fixed working duty cycle). Extensive experiments validate our theoretical results. Notice that most existing works on this topic put their focus on centralized sensing schedule, which is shown to be extremely difficult to implement in large scale networked sensor system.
Year
DOI
Venue
2013
10.1109/INFCOM.2013.6566754
INFOCOM
Keywords
Field
DocType
duty cycling,distributed sensing scheduling,scheduling,sensing schedule,quality of monitoring,submodular,damson,wireless sensor networks,qom,spacial-temporal correlations,games,sensors,algorithm design and analysis,correlation,schedules
Key distribution in wireless sensor networks,Computer science,Scheduling (computing),Duty cycle,Submodular set function,Real-time computing,Schedule,Sensor system,Wireless sensor network,Energy constraint,Distributed computing
Conference
ISSN
ISBN
Citations 
0743-166X
978-1-4673-5944-3
8
PageRank 
References 
Authors
0.47
19
2
Name
Order
Citations
PageRank
Tang Shaojie12224157.73
Jing Yuan223711.92