Title
A noise-driven effective capacitance method with fast embedded noise rule calculation for functional noise analysis
Abstract
We present a noise-driven effective capacitance method for estimating the combined propagation noise and crosstalk noise. Gate propagation noise rules are efficiently calculated inside the Ceff procedure to determine a linear Thevenin model of the victim driver. A voltage-dependent current source model (Croix and Wong, 2003 and Keller et al.,2004) of the driver, along with a load capacitor is analyzed to generate the gate output waveform, from which noise rules are directly extracted. This method removes potential errors introduced in traditional look-up table or fitted-equation based noise rules. The linear driver Thevenin model can then be employed to analyze the propagation noise, while the same Thevenin resistance can be used to analyze the crosstalk noise. The combined coupling and propagation noise can then be estimated using superposition. In this work, we extend the popular timing-driven effective capacitance method into the noise domain. Similar to the effective capacitance method in timing analysis, this technique can successfully separate the nonlinear driver analysis from the linear interconnect analysis. In addition, the linear driver model can significantly ease the task of finding the worst-case peak alignment among all the victim and aggressor noise sources. Experimental results on both RC and RLC nets from industry designs show both accuracy and efficiency compared to SPICE results.
Year
DOI
Venue
2005
10.1109/DAC.2005.193798
DAC
Keywords
Field
DocType
functional noise analysis,fast embedded noise rule,industry design,cmos integrated circuits,nonlinear network analysis,spice,current source model,thevenin resistance,linear driver thevenin model,propagation noise,driver circuits,aggressor noise source,gate output waveform,integrated circuit modelling,noise rules,fitted-equation,capacitance,circuit analysis computing,noise rule,look-up table,linear interconnect analysis,linear driver model,crosstalk noise,gate propagation noise,digital integrated circuits,rc nets,noise domain,nonlinear driver analysis,integrated circuit noise,combined propagation noise,noise rule calculation,noise-driven effective capacitance method,thevenin model,rlc nets,timing analysis,effective capacitance method,gate propagation noise rule,industrial design,voltage,algorithm design and analysis,crosstalk,look up table
Superposition principle,Capacitance,Computer science,Current source,Waveform,Noise (electronics),Electronic engineering,Noise temperature,Effective input noise temperature,RLC circuit
Conference
ISSN
ISBN
Citations 
0738-100X
1-59593-058-2
1
PageRank 
References 
Authors
0.37
10
5
Name
Order
Citations
PageRank
Haihua Su140527.32
David Widiger281.45
Chandramouli V. Kashyap343329.87
Frank Liu426223.05
Byron Krauter56810.21