Title
GeNESiS: gene network evolution simulation software.
Abstract
Background: There has been a lot of interest in recent years focusing on the modeling and simulation of Gene Regulatory Networks (GRNs). However, the evolutionary mechanisms that give rise to GRNs in the first place are still largely unknown. In an earlier work, we developed a framework to analyze the effect of objective functions, input types and starting populations on the evolution of GRNs with a specific emphasis on the robustness of evolved GRNs. Results: In this work, we present a parallel software package, GeNESiS for the modeling and simulation of the evolution of gene regulatory networks (GRNs). The software models the process of gene regulation through a combination of finite-state and stochastic models. The evolution of GRNs is then simulated by means of a genetic algorithm with the network connections represented as binary strings. The software allows users to simulate the evolution under varying selective pressures and starting conditions. We believe that the software provides a way for researchers to understand the evolutionary behavior of populations of GRNs. Conclusion: We believe that GeNESiS will serve as a useful tool for scientists interested in understanding the evolution of gene regulatory networks under a range of different conditions and selective pressures. Such modeling efforts can lead to a greater understanding of the network characteristics of GRNs.
Year
DOI
Venue
2008
10.1186/1471-2105-9-541
BMC Bioinformatics
Keywords
Field
DocType
objective function,bioinformatics,microarrays,gene regulation,gene network,gene regulatory networks,algorithms,gene regulatory network,modeling and simulation,genetic algorithm,stochastic model,computer simulation,simulation software
Simulation software,Parallel genetic algorithm,Modeling and simulation,Computer science,Robustness (computer science),Theoretical computer science,Bioinformatics,Gene regulatory network,Genetic algorithm
Journal
Volume
Issue
ISSN
9
1
1471-2105
Citations 
PageRank 
References 
29
0.47
3
Authors
3
Name
Order
Citations
PageRank
Anton Kratz1290.47
Masaru Tomita21009180.20
Arun Krishnan3290.47