Title
Rate distortion analysis and bit allocation scheme for wavelet lifting-based multiview image coding
Abstract
This paper studies the distortion and the model-based bit allocation scheme of wavelet lifting-based multiview image coding. Redundancies among image views are removed by disparity-compensated wavelet lifting (DCWL). The distortion prediction of the low-pass and high-pass subbands of each image view from the DCWL process is analyzed. The derived distortion is used with different rate distortion models in the bit allocation of multiview images. Rate distortion models including power model, exponential model, and the proposed combining the power and exponential models are studied. The proposed rate distortion model exploits the accuracy of both power and exponential models in a wide range of target bit rates. Then, low-pass and high-pass subbands are compressed by SPIHT (Set Partitioning in Hierarchical Trees) with a bit allocation solution. We verify the derived distortion and the bit allocation with several sets of multiview images. The results show that the bit allocation solution based on the derived distortion and our bit allocation scheme provide closer results to those of the exhaustive search method in both allocated bits and peak-signal-to-noise ratio (PSNR). It also outperforms the uniform bit allocation and uniform bit allocation with normalized energy in the order of 1.7-2 and 0.3-1.4 dB, respectively.
Year
DOI
Venue
2009
10.1155/2009/394065
EURASIP J. Adv. Sig. Proc.
Keywords
Field
DocType
uniform bit allocation,wavelet lifting-based multiview image,rate distortion analysis,multiview image,bit allocation,bit allocation solution,different rate distortion model,image view,model-based bit allocation scheme,bit allocation scheme,exponential model,target bit rate
Set partitioning in hierarchical trees,Code rate,Computer science,Signal-to-noise ratio,Image processing,Algorithm,Rate–distortion theory,Distortion,Bit error rate,Wavelet
Journal
Volume
Issue
ISSN
2009,
1
1687-6180
Citations 
PageRank 
References 
0
0.34
18
Authors
2
Name
Order
Citations
PageRank
Pongsak Lasang1165.29
Wuttipong Kumwilaisak27012.10