Title
A Real 3-D Monte Carlo Model for the Simulation of Radiative Transfer in Waters
Abstract
A forward Monte Carlo 3-D (FMC3D) model is developed for simulating light fields in a volume of water where the boundary conditions for radiance values can be expressed by mathematical formulas, which cannot be done using the radiative transfer models currently available such as HydroLight. Water is assumed parallel homogenous for these models, which are incapable of investigating the sidewall reflectance effect on the light fields. These ones are called quasi-3-D radiative transfer models. The FMC3D model perfects the assumption and the incapability and is validated using the in situ data measured in the tank experiment. The FMC3D model is first applied to investigate the sidewall reflectance effect on the remote sensing reflectance Rrs for waters in a fabricated tank with infinite depth and different radii. The investigation shows that the effect is decreasing with the increase in the tank radius and that the minimum radius that the effect is negligible for highly scattering water is bigger than that for highly absorbing water. Taking the tank used in the experiment carried out in a previous work by Han and Rundquist as an example, the FMC3D model is second applied to investigate the combining effects on Rrs from bottom and sidewall reflectances. Compared with Rrs for open water, the Rrs for tank water having the same inherent optical properties is underestimated. The underestimation is increasing with the increase in the single scattering albedo ω and can be up to 32% for water with ω = 0.88, showing that the effects cannot be removed by the black inside wall, which is a method commonly used in tank experiments. The potential applications of the FMC3D model are discussed, taking the examples of the correction for the wall reflectance effect on apparent spectra measured in tank experiments and of the scattering error correction for the reflective tube absorption coefficient me- sured using a WET Labs AC-9 or AC-S device.
Year
DOI
Venue
2013
10.1109/TGRS.2012.2202397
IEEE T. Geoscience and Remote Sensing
Keywords
Field
DocType
water radiative transfer simulation,bottom reflectance,remote sensing,water remote sensing reflectance,scattering,light scattering,tank experiment,optical properties,monte carlo (mc) methods,light field simulation,sidewall reflectance effect,underwater optics,radiative transfer,quasi-3d radiative transfer models,reflectivity,parallel homogenous medium,scattering error correction,radiance boundary conditions,monte carlo methods,fmc3d model,forward monte carlo 3d model,solid modeling,photonics,absorption,mathematical model
Attenuation coefficient,Monte Carlo method,Remote sensing,Radius,Scattering,Radiative transfer,Mathematics,Radiance,Single-scattering albedo,Light scattering
Journal
Volume
Issue
ISSN
51
1
0196-2892
Citations 
PageRank 
References 
0
0.34
0
Authors
4
Name
Order
Citations
PageRank
Minwei Zhang194.18
Jun-wu Tang200.68
Qing Dong341.65
Qingjun Song425.92