Title
Noninvasive measurement of conductivity anisotropy at larmor frequency using MRI.
Abstract
Anisotropic electrical properties can be found in biological tissues such as muscles and nerves. Conductivity tensor is a simplified model to express the effective electrical anisotropic information and depends on the imaging resolution. The determination of the conductivity tensor should be based on Ohm's law. In other words, the measurement of partial information of current density and the electric fields should be made. Since the direct measurements of the electric field and the current density are difficult, we use MRI to measure their partial information such as B1 map; it measures circulating current density and circulating electric field. In this work, the ratio of the two circulating fields, termed circulating admittivity, is proposed as measures of the conductivity anisotropy at Larmor frequency. Given eigenvectors of the conductivity tensor, quantitative measurement of the eigenvalues can be achieved from circulating admittivity for special tissue models. Without eigenvectors, qualitative information of anisotropy still can be acquired from circulating admittivity. The limitation of the circulating admittivity is that at least two components of the magnetic fields should be measured to capture anisotropic information.
Year
DOI
Venue
2013
10.1155/2013/421619
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE
Keywords
Field
DocType
diagnostic imaging,algorithms,anisotropy,biophysics,electric conductivity,magnetic resonance imaging,computer simulation
Conductivity,Magnetic field,Anisotropy,Tensor,Computer science,Artificial intelligence,Current density,Computer vision,Computational physics,Electric field,Larmor precession,Nuclear magnetic resonance,Electrical resistivity and conductivity
Journal
Volume
ISSN
Citations 
2013
1748-670X
2
PageRank 
References 
Authors
0.43
3
6
Name
Order
Citations
PageRank
Joon-Sung Lee1151.95
Yizhuang Song241.49
Narae Choi3171.96
Sungmin Cho4675.71
Jin Keun Seo537658.65
Dong-Hyun Kim6396.05