Title
Modeling And Simulating The Deformation Of Human Skeletal Muscle Based On Anatomy And Physiology
Abstract
This paper describes the modeling and simulation of the deformation of human skeletal muscle at different structural levels based on sound scientific principles, experimental evidence, and state-of-art muscle anatomy and physiology. The equations of a continuum model of a muscle with realistic architecture, including internal arrangement Of muscle fibers and passive structures, and deformation, including activation relations, was developed and solved with the finite element method. The continuum model is used as the basis of a strategy for controlling muscle deformation using activation relations. In order to demonstrate the functionality of the model, it was used to investigate force production and structural changes during contraction of the human tibialis anterior for maximally and submaximally activated muscle behavior. From a comparison with experimental data obtained from ultrasound imaging, we concluded that the modeling and simulation of the continuum based on physiologically meaningful parameters as described in the paper is both an excellent predictor of force production observations and of changes in internal geometry under various test conditions. It is therefore a valuable tool for controlling muscle deformation during movement. Copyright (c) 2005 John Wiley & Sons, Ltd.
Year
DOI
Venue
2005
10.1002/cav.83
COMPUTER ANIMATION AND VIRTUAL WORLDS
Keywords
Field
DocType
physically-based muscle modeling, medical three-dimensional simulation
Anatomy,Modeling and simulation,Computer science,Skeletal muscle,Simulation,Ultrasound imaging,Finite element method,Physiology,Deformation (mechanics)
Journal
Volume
Issue
ISSN
16
3-4
1546-4261
Citations 
PageRank 
References 
5
1.83
1
Authors
5
Name
Order
Citations
PageRank
R R Lemos172.55
Jon G. Rokne226345.63
Gladimir V. G. Baranoski321431.67
Yasuo Kawakami494.33
Toshiyuki Kurihara551.83