Title
Synchronous sequential computation with molecular reactions
Abstract
Just as electronic systems implement computation in terms of voltage (energy per unit charge), molecular systems compute in terms of chemical concentrations (molecules per unit volume). Prior work has established mechanisms for implementing logical and arithmetic functions including addition, multiplication, exponentiation, and logarithms with molecular reactions. In this paper, we present a general methodology for implementing synchronous sequential computation. We generate a four-phase clock signal through robust, sustained chemical oscillations. We implement memory elements by transferring concentrations between molecular types in alternating phases of the clock. We illustrate our design methodology with examples: a binary counter as well as a four-point, two-parallel FFT. We validate our designs through ODE simulations of mass-action chemical kinetics. We are exploring DNA-based computation via strand displacement as a possible experimental chassis.
Year
DOI
Venue
2011
10.1145/2024724.2024911
DAC
Keywords
Field
DocType
sequential circuits,digital design,chemical concentrations,molecular reaction,molecular computation,chemical concentration,molecular system,sequential logic,molecular biophysics,synthetic biology,reaction kinetics,four-phase clock signal,sustained chemical oscillation,dna-based computation,synchronous sequential computation,molecular type,synchronous logic,design methodology,molecular reactions,dna,chemical oscillations,mass-action chemical kinetics,computational biology,chemical kinetics,computer model,kinetic theory,arithmetic function,chemicals,oscillations,radiation detector,synchronization,oscillators,radiation detectors,computational modeling
Clock signal,Synchronization,Sequential logic,Computer science,Electronic engineering,Multiplication,Fast Fourier transform,Exponentiation,Computation,Binary number
Conference
ISSN
ISBN
Citations 
0738-100x
978-1-4503-0636-2
14
PageRank 
References 
Authors
1.11
4
3
Name
Order
Citations
PageRank
Hua Jiang1435.05
Marc Riedel2454.72
keshab k parhi33235369.07