Title
Switched Model Predictive Control for Energy Dispatching of a Photovoltaic-Diesel-Battery Hybrid Power System
Abstract
A new adaptive switched model predictive control (MPC) strategy is designed in this brief for energy dispatching of a photovoltaic-diesel-battery hybrid power system, where the battery is unpermitted to charge and discharge simultaneously. The distinguishing feature of the proposed switched MPC is that, new switched constraints are constructed to describe the different modes (charging and discharging) of the battery, such that the burden of using a switched multiple-input-multiple-output state-space model could be circumvented. Parameters of the battery are unknown constants, and are estimated online with an adaptive updating law. In the switched MPC algorithm, predictive horizon and control horizon vary according to the predefined switching schedule. On the basis of optimization with the switched constraints, receding horizon control is used to obtain the dispatching strategy for the hybrid power system. Performances of the closed-loop system with the proposed switched MPC are verified by simulation results.
Year
DOI
Venue
2015
10.1109/TCST.2014.2361800
Control Systems Technology, IEEE Transactions  
Keywords
Field
DocType
Batteries,Switches,Hybrid power systems,Generators,Dispatching,Partial discharges,Optimization
Diesel fuel,Mimo systems,Control theory,Horizon,Model predictive control,Hybrid power,Control engineering,Battery (electricity),Photovoltaic system,Mathematics
Journal
Volume
Issue
ISSN
23
3
1063-6536
Citations 
PageRank 
References 
8
0.63
5
Authors
3
Name
Order
Citations
PageRank
Bing Zhu19914.45
Henerica Tazvinga280.96
Xiaohua Xia346848.50