Title
Phase-Noise Mitigation in OFDM by Best Match Trajectories
Abstract
This paper proposes a novel approach to phasenoise compensation. The basic idea is to approximate the phasenoise statistics by a finite number of realizations, i.e., a phasenoise codebook. The receiver then uses an augmented received signal model, where the codebook index is estimated along with other parameters. The realization of the basic idea depends on the details of the air interface, the phase-noise statistics, the propagation scenario and the computational constraints. In this paper, we will focus on a MQAM-OFDM system with pilot subcarriers within each OFDM symbol. The channel is frequency selective, fading and unknown. A decision-feedback method is employed to further enhance performance of the system. Simulation results are shown for uncoded and coded systems to illustrate the performance of the algorithm, which is also compared with previously employed methods. Our simulations show that for a 16-QAM coded OFDM system over a frequency selective Rayleigh fading channel affected by phase noise with root-mean-square (RMS) of 14.4 degrees per OFDM symbol, the proposed algorithm is 1.5dB from the ideal phase-noise free case at a BER of 10−4. The performance of the best reference scheme is 2.5dB from the ideal case at BER of 10−4. The proposed scheme is also computationally attractive.
Year
DOI
Venue
2015
10.1109/TCOMM.2015.2422829
Communications, IEEE Transactions  
Keywords
Field
DocType
OFDM,Trajectory,Channel estimation,Fading,Approximation methods,Quantization (signal),Bit error rate
Signal processing,Rayleigh fading,Control theory,Computer science,Fading,Phase noise,Communication channel,Electronic engineering,Orthogonal frequency-division multiplexing,Codebook,Bit error rate
Journal
Volume
Issue
ISSN
PP
99
0090-6778
Citations 
PageRank 
References 
0
0.34
19
Authors
3
Name
Order
Citations
PageRank
Senay Negusse140.94
Per Zetterberg220924.11
Peter Handel377691.45