Title
Spatial Coupling of Generator Matrices: A General Approach to Design Good Codes at a Target BER
Abstract
For any given short code (referred to as the basic code), block Markov superposition transmission (BMST) provides a simple way to obtain predictable extra coding gain by spatially coupling the generator matrix of the basic code. This paper presents a systematic design methodology for BMST systems to approach the channel capacity at any given target bit error rate (BER) of interest. To simplify the design, we choose the basic code as the Cartesian product of a short block code. The encoding memory is then inferred from the genie-aided lower bound according to the performance gap of the short block code to the corresponding Shannon limit at the target BER. In addition to the sliding-window decoding algorithm, we propose to perform one more phase decoding to remove residual (rare) errors. A new technique that assumes a noisy genie is proposed to upper bound the performance. Under some mild assumptions, these genie-aided bounds can be used to predict the performance of the proposed two-phase decoding algorithm in the extremely low BER region. Using the Cartesian product of a repetition code as the basic code, we construct a BMST system with an encoding memory 30 whose performance at the BER of 10-15 can be predicted within 1 dB away from the Shannon limit over the binary-input additive white Gaussian noise channel.
Year
DOI
Venue
2014
10.1109/TCOMM.2014.2366131
IEEE Transactions on Communications
Keywords
Field
DocType
Bit error rate,Decoding,Iterative decoding,Block codes,Convolutional codes
Concatenated error correction code,Repetition code,Short Code,Parity-check matrix,Constant-weight code,Computer science,Low-density parity-check code,Algorithm,Cyclic code,Electronic engineering,Linear code
Journal
Volume
Issue
ISSN
62
12
0090-6778
Citations 
PageRank 
References 
8
0.51
19
Authors
4
Name
Order
Citations
PageRank
Chulong Liang110312.50
Xiao Ma248764.77
Qiutao Zhuang3443.56
Baoming Bai435363.90