Title
Social Game for Building Energy Efficiency: Utility Learning, Simulation, and Analysis.
Abstract
We describe a social game that we designed for encouraging energy efficient behavior amongst building occupants with the aim of reducing overall energy consumption in the building. Occupants vote for their desired lighting level and win points which are used in a lottery based on how far their vote is from the maximum setting. We assume that the occupants are utility maximizers and that their utility functions capture the tradeoff between winning points and their comfort level. We model the occupants as non-cooperative agents in a continuous game and we characterize their play using the Nash equilibrium concept. Using occupant voting data, we parameterize their utility functions and use a convex optimization problem to estimate the parameters. We simulate the game defined by the estimated utility functions and show that the estimated model for occupant behavior is a good predictor of their actual behavior. In addition, we show that due to the social game, there is a significant reduction in energy consumption.
Year
Venue
Keywords
2014
CoRR
game theory,energy efficiency,engineering
Field
DocType
Volume
Mathematical optimization,Voting,Efficient energy use,Lottery,Continuous game,Game theory,Nash equilibrium,Energy consumption,Convex optimization,Mathematics
Journal
abs/1407.0727
Citations 
PageRank 
References 
2
0.44
4
Authors
5
Name
Order
Citations
PageRank
Ioannis C. Konstantakopoulos1114.28
Lillian J. Ratliff28723.32
Ming Jin3298.50
Shankar Sastry4119771291.58
Costas Spanos533345.49