Title
Estimating topological properties of weighted networks from limited information.
Abstract
A problem typically encountered when studying complex systems is the limitedness of the information available on their topology, which hinders our understanding of their structure and of the dynamical processes taking place on them. A paramount example is provided by financial networks, whose data are privacy protected: Banks publicly disclose only their aggregate exposure towards other banks, keeping individual exposures towards each single bank secret. Yet, the estimation of systemic risk strongly depends on the detailed structure of the interbank network. The resulting challenge is that of using aggregate information to statistically reconstruct a network and correctly predict its higher-order properties. Standard approaches either generate unrealistically dense networks, or fail to reproduce the observed topology by assigning homogeneous link weights. Here, we develop a reconstruction method, based on statistical mechanics concepts, that makes use of the empirical link density in a highly nontrivial way. Technically, our approach consists in the preliminary estimation of node degrees from empirical node strengths and link density, followed by amaximum-entropy inference based on a combination of empirical strengths and estimated degrees. Our method is successfully tested on the international trade network and the interbank money market, and represents a valuable tool for gaining insights on privacy-protected or partially accessible systems.
Year
DOI
Venue
2014
10.1103/PhysRevE.92.040802
PHYSICAL REVIEW E
Field
DocType
Volume
Data mining,Financial networks,Mathematics
Journal
92
Issue
ISSN
Citations 
4
1539-3755
9
PageRank 
References 
Authors
0.99
0
4
Name
Order
Citations
PageRank
Giulio Cimini1535.58
Tiziano Squartini26711.86
Andrea Gabrielli3707.82
Diego Garlaschelli49018.49