Title
Left-Invariant Riemannian Geodesics on Spatial Transformation Groups.
Abstract
Spatial transformations are mappings between locations of a d-dimensional space and are commonly used in computer vision and image analysis. Many of the spatial transformation sets have a group structure and can be represented by matrix groups. In the computer vision and image analysis fields there is a recent and growing interest in performing analyses on spatial transformations data. Differential and Riemannian geometry have been used as a framework to endow the set of spatial transformations with a metric space structure, allowing the extension of the standard analysis techniques defined on vector spaces. This paper presents a review of the concepts and an overview of approaches to computing Riemannian geodesics on spatial transformation groups. The paper is aimed at providing a bridge for researchers from computer vision and image analysis fields to fill in the gap between differential geometry and computer vision and imaging disciplines. Some application examples are shown to illustrate the use of invariant Riemannian geodesics, such as interpolation of spatial transformations and filtering of matrix-valued images.
Year
DOI
Venue
2014
10.1137/130928352
SIAM JOURNAL ON IMAGING SCIENCES
Keywords
Field
DocType
left-invariant geodesics,Riemannian exponential,Lie groups,spatial transformation groups
Lie group,Vector space,Algebra,Mathematical analysis,Differential geometry,Invariant (mathematics),Metric space,Riemannian geometry,Fundamental theorem of Riemannian geometry,Mathematics,Geodesic
Journal
Volume
Issue
ISSN
7
3
1936-4954
Citations 
PageRank 
References 
2
0.41
0
Authors
3
Name
Order
Citations
PageRank
Ernesto Zacur1131.59
Matias Bossa2302.43
Salvador Olmos312713.87