Title
Cascaded displays: spatiotemporal superresolution using offset pixel layers
Abstract
We demonstrate that layered spatial light modulators (SLMs), subject to fixed lateral displacements and refreshed at staggered intervals, can synthesize images with greater spatiotemporal resolution than that afforded by any single SLM used in their construction. Dubbed cascaded displays, such architectures enable superresolution flat panel displays (e.g., using thin stacks of liquid crystal displays (LCDs)) and digital projectors (e.g., relaying the image of one SLM onto another). We introduce a comprehensive optimization framework, leveraging non-negative matrix and tensor factorization, that decomposes target images and videos into multi-layered, time-multiplexed attenuation patterns---offering a flexible trade-off between apparent image brightness, spatial resolution, and refresh rate. Through this analysis, we develop a real-time dual-layer factorization method that quadruples spatial resolution and doubles refresh rate. Compared to prior superresolution displays, cascaded displays place fewer restrictions on the hardware, offering thin designs without moving parts or the necessity of temporal multiplexing. Furthermore, cascaded displays are the first use of multi-layer displays to increase apparent temporal resolution. We validate these concepts using two custom-built prototypes: a dual-layer LCD and a dual-modulation liquid crystal on silicon (LCoS) projector, with the former emphasizing head-mounted display (HMD) applications.
Year
DOI
Venue
2014
10.1145/2601097.2601120
ACM Trans. Graph.
Keywords
Field
DocType
dual modulation displays,non-negative matrix and tensor factorization,superresolution,display algorithms,multi-layer displays
Computer vision,Computer graphics (images),Liquid crystal on silicon,Computer science,Refresh rate,Projector,Liquid-crystal display,Artificial intelligence,Pixel,Temporal resolution,Image resolution,Brightness
Journal
Volume
Issue
ISSN
33
4
0730-0301
Citations 
PageRank 
References 
7
0.61
19
Authors
6
Name
Order
Citations
PageRank
Felix Heide132932.29
Douglas Lanman250435.26
Dikpal Reddy320713.49
Jan Kautz43615198.77
Kari Pulli52170157.09
David Luebke62196140.84