Title
Skewed general variable neighborhood search for the location routing scheduling problem
Abstract
The integrated location routing scheduling problem is a variant of the well-known location routing problem. The location routing problem consists in selecting a set of depots to open and in building a set of routes from these depots, to serve a set of customers at minimum cost. In this variant, a vehicle can perform more than a single route in the planning period. As a consequence, the routes have to be scheduled within the workdays of each vehicle. The problem arises typically when routes are constrained to have a short duration. It happens for example within the boundaries of small geographic areas or in the transportation of perishable goods. In this paper, we propose a skewed general variable neighborhood search based heuristic to solve it. The algorithm is tested extensively and we show that it is efficient and provides the proven optimal solution in a significant number of cases. Moreover, it clearly outperforms a multi-start VND based heuristic that uses the same neighborhood structures.
Year
DOI
Venue
2015
10.1016/j.cor.2015.03.011
Computers and Operations Research
Keywords
DocType
Volume
Location,Routing,Scheduling,Variable neighborhood search
Journal
61
Issue
ISSN
Citations 
C
0305-0548
6
PageRank 
References 
Authors
0.59
26
7
Name
Order
Citations
PageRank
Rita Macedo1685.57
Cláudio Alves218416.29
Saïd Hanafi358442.21
Bassem Jarboui448227.32
Nenad Mladenovic51882127.14
Bruna Ramos661.27
José M. Valério de Carvalho7936.63