Title
Evaluation of Precipitation Estimates by at-Launch Codes of GPM/DPR Algorithms Using Synthetic Data from TRMM/PR Observations
Abstract
The Global Precipitation Measurement (GPM) Core Observatory will carry a Dual-frequency Precipitation Radar (DPR) consisting of a Ku-band precipitation radar (KuPR) and a Ka-band precipitation radar (KaPR). In this study, “at-launch” codes of DPR precipitation algorithms, which will be used in GPM ground systems at launch, were evaluated using synthetic data based upon the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data. Results from the codes (Version 4.20131010) of the KuPR-only, KaPR-only, and DPR algorithms were compared with “true values” calculated based upon drop size distributions assumed in the synthetic data and standard results from the TRMM algorithms at an altitude of 2 km over the ocean. The results indicate that the total precipitation amounts during April 2011 from the KuPR and DPR algorithms are similar to the true values, whereas the estimates from the KaPR data are underestimated. Moreover, the DPR estimates yielded smaller precipitation rates for rates less than about 10 mm/h and greater precipitation rates above 10 mm/h. Underestimation of the KaPR estimates was analyzed in terms of measured radar reflectivity (Zm) of the KaPR at an altitude of 2 km. The underestimation of the KaPR data was most pronounced during strong precipitation events of Zm <; 18 dBZ (high attenuation cases) over heavy precipitation areas in the Tropics, whereas the underestimation was less pronounced when the Zm > 26 (moderate attenuation cases). The results suggest that the underestimation is caused by a problem in the attenuation correction method, which was verified by the improved codes.
Year
DOI
Venue
2014
10.1109/JSTARS.2014.2320960
Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  
Keywords
Field
DocType
atmospheric precipitation,remote sensing by radar,ad 2011 04,dpr algorithm,dpr algorithms,dpr precipitation algorithms,gpm core observatory,gpm-dpr algorithms,global precipitation measurement,ka-band precipitation radar,kapr data,kapr-only,ku-band precipitation radar,kupr algorithm,kupr-only,trmm algorithms,trmm precipitation radar data,trmm-pr observations,tropical rainfall measuring mission,at-launch codes,drop size distributions,dual-frequency precipitation radar,heavy precipitation areas,precipitation estimate evaluation,precipitation rates,strong precipitation events,synthetic data,algorithms,global precipitation measurement (gpm),tropical rainfall measuring mission (trmm),attenuation,rain,simulation,snow,spaceborne radar,geometry
Radar,Global Precipitation Measurement,Remote sensing,Algorithm,Altitude,Atmospheric sciences,Synthetic data,Correction for attenuation,Attenuation,Mathematics,Snow,Precipitation
Journal
Volume
Issue
ISSN
7
9
1939-1404
Citations 
PageRank 
References 
5
1.14
18
Authors
10
Name
Order
Citations
PageRank
Takuji Kubota15318.28
naofumi yoshida251.14
shinji urita361.53
Toshio Iguchi48329.97
Shinta Seto5216.88
Robert Meneghini6237.72
jun awaka71157.49
Hiroshi Hanado82813.52
Satoshi Kida9112.64
Riko Oki10128.21