Title
Radiative transfer in the midwave infrared applicable to full spectrum atmospheric characterization
Abstract
The compensation for atmospheric effects in the VNIR/SWIR has reached a mature stage of development with many algorithms available for application (ATREM, FLAASH, ACORN, etc.). Compensation of LWIR data is the focus of a number of promising algorithms. A gap in development exists in the MWIR where little or no atmospheric compensation work has been done yet an increased interest in MWIR applications is emerging. To obtain atmospheric compensation over the full spectrum (visible through LWIR), a better understanding of the radiative effects in the MWIR is needed. The MWIR is characterized by a unique combination of reduced solar irradiance and low thermal emission (for typical emitting surfaces), both providing relatively equal contributions to the daytime MWIR radiance. In the MWIR and LWIR, the compensation problem can be viewed as two interdependent processes: compensation for the effects of the atmosphere and the uncoupling of the surface temperature and emissivity. The former requires calculations of the atmospheric transmittance due to gases, aerosols, and thin clouds and the path radiance directed towards the sensor (both solar scattered and thermal emissions in the MWIR). A framework for a combined MWIR/LWIR compensation approach is presented where both scattering and absorption by atmospheric particles and gases are considered.
Year
DOI
Venue
2004
10.1109/IGARSS.2004.1370059
Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International
Keywords
Field
DocType
aerosols,atmospheric optics,atmospheric spectra,atmospheric techniques,clouds,infrared imaging,radiative transfer,remote sensing,LWIR data,MWIR/LWIR compensation,VNIR/SWIR,aerosols,atmospheric compensation,atmospheric effects,atmospheric particles,atmospheric transmittance,daytime MWIR radiance,emissivity,full spectrum atmospheric characterization,hyperspectral imaging sensor,low thermal emission,midwave infrared,path radiance,radiative effects,radiative transfer,reduced solar irradiance,surface temperature,thermal emissions,thin clouds
Atmospheric optics,VNIR,Remote sensing,Optics,Solar irradiance,Radiative transfer,Infrared,Emissivity,Radiance,Infrared window,Physics
Conference
Volume
ISSN
ISBN
6
2153-6996
0-7803-8742-2
Citations 
PageRank 
References 
2
0.90
1
Authors
3
Name
Order
Citations
PageRank
Michael K. Griffin131.31
Hsiao-hua K. Burke231.31
John P. Kerekes319435.38