Title
Uncoordinated rate-division multiple-access scheme for pulsed UWB signals
Abstract
Popular multiple-access schemes for asynchronous users that access the channel at randomly or pseudorandomly chosen time instances are ALOHA and TH-PPM. To cope with the randomness of these signals can be challenging for a receiver. In this paper, an uncoordinated but deterministic multiple-access scheme is proposed that can eliminate some of these drawbacks. The principle of this scheme is that each user transmits with an individual pulse or packet rate, while the duty cycle of the user signals is kept very low. As the access to the channel is asynchronous, collisions will occur. An analytical expression is derived for the collision probability, which depends on the asynchronism between the users. Design rules are derived that make the collision probability independent of the asynchronism. In practical implementations, deviations from the design values for the user rates will occur, and the length of a data packet is limited; the impact of these aspects on the collision probability is discussed. Simulation of a sensor network scenario without transmit power control shows that the design rules that make the collision probability insensitive to the asynchronism also do this for the bit-error rate (BER). The comparison of simulation results for RDMA with binary antipodal modulation and random TH-PSK, which is related to TH-PPM, yields very similar bit-error rates.
Year
DOI
Venue
2005
10.1109/TVT.2005.853980
Vehicular Technology, IEEE Transactions
Keywords
Field
DocType
access protocols,error statistics,multi-access systems,phase shift keying,probability,pulse position modulation,telecommunication channels,ultra wideband communication,ALOHA,BER,asynchronous channel,binary antipodal modulation,bit-error rate,collision probability,data packet,pulsed UWB signals,time-hopping PSK,time-hopping pulse-position modulation,uncoordinated rate-division multiple access scheme,Impulse radio,low duty cycle,rate-division multiple-access (RDMA),ultra-wideband (UWB),uncoordinated multiple-access
Asynchronous communication,Aloha,Pulse-position modulation,Data transmission,Computer science,Network packet,Computer network,Communication channel,Electronic engineering,Phase-shift keying,Randomness
Journal
Volume
Issue
ISSN
54
5
0018-9545
Citations 
PageRank 
References 
11
1.01
6
Authors
2
Name
Order
Citations
PageRank
Martin Weisenhorn1316.29
Walter Hirt27134.93