Title
A Two-Stage Approach to Estimate the Angles of Arrival and the Angular Spreads of Locally Scattered Sources
Abstract
We propose a new two-stage approach to estimate the nominal angles of arrival (AoAs) and the angular spreads (ASs) of multiple locally scattered sources using a uniform linear array (ULA) of sensors. In contrast to earlier works, we consider both long- and short-term channel variations, typically encountered in wireless links. In the first stage, we exploit sources independence to blindly estimate the channel over several data blocks regularly spaced by intervals larger than the coherence time but each, short enough in length, to make time variations negligible within the block duration. We, thereby, decouple the multisource channel parameters estimation problem in hand into parallel and independent single-source channel parameters estimation subproblems. In the second stage, for each spatially scattered source, we process the corresponding sequence of quasi-independent channel realization estimates as a new single-scattered-source observation over which we apply Taylor series expansions to transform the estimation of the nominal AoA and the AS of the corresponding scattered source into a simple localization of two closely spaced, equi-powered, and uncorrelated rays (i.e., point sources). To localize both rays, we propose new accurate and computationally simple closed-form expressions for the mean value of the spatial harmonics and their separation by means of covariance fitting. An asymptotic performance analysis is also provided to prove the efficiency of the proposed estimators. Then, the AS and the nominal AoA of every source are directly deduced. The whole proposed framework takes advantage of the capabilities of the preprocessing channel identification step (to reduce the noise effect and decouple the estimation of the channel parameters of every source from the others) and the new simple and accurate closed-form estimators to accurately retrieve the channel parameters even in the most adverse conditions, mainly low signal-to-noise ratio (SNR), few sensors, no- - prior knowledge of the angular distribution, and closely spaced sources, as supported by simulations.
Year
DOI
Venue
2008
10.1109/TSP.2007.909223
IEEE Transactions on Signal Processing
Keywords
Field
DocType
array signal processing,channel estimation,direction-of-arrival estimation,series (mathematics),wireless channels,Taylor series expansion,angles of arrival estimation,angular spreads,asymptotic performance analysis,channel identification,multiple locally scattered source,multisource channel parameters estimation problem,quasi independent channel realization estimation,single-source channel parameters estimation,uniform linear sensor array,wireless channel links,Angular spread,closely spaced sources,locally scattered sources,long/short term wireless channel variations,nominal angle of arrival,source localization
Control theory,Signal-to-noise ratio,Algorithm,Communication channel,Point source,Estimation theory,Statistics,Source separation,Mathematics,Covariance,Estimator,Coherence time
Journal
Volume
Issue
ISSN
56
5
1053-587X
Citations 
PageRank 
References 
22
0.95
21
Authors
3
Name
Order
Citations
PageRank
M. Souden1965.91
S. Affes246538.31
Jacob Benesty31941146.01