Title
Analytical Model for Connectivity in Vehicular Ad Hoc Networks
Abstract
We investigate connectivity in the ad hoc network formed between vehicles that move on a typical highway. We use a common model in vehicular traffic theory in which a fixed point on the highway sees cars passing it that are separated by times with an exponentially distributed duration. We obtain the distribution of the distances between the cars, which allows us to use techniques from queuing theory to study connectivity. We obtain the Laplace transform of the probability distribution of the connectivity distance, explicit expressions for the expected connectivity distance, and the probability distribution and expectation of the number of cars in a platoon. Then, we conduct extensive simulation studies to evaluate the obtained results. The analytical model that we present is able to describe the effects of various system parameters, including road traffic parameters (i.e., speed distribution and traffic flow) and the transmission range of vehicles, on the connectivity. To more precisely study the effect of speed on connectivity, we provide bounds obtained using stochastic ordering techniques. Our approach is based on the work of Miorandi and Altman, which transformed the problem of connectivity distance distribution into that of the distribution of the busy period of an equivalent infinite server queue. We use our analytical results, along with common road traffic statistical data, to understand connectivity in vehicular ad hoc networks.
Year
DOI
Venue
2008
10.1109/TVT.2008.2002957
Vehicular Technology, IEEE Transactions
Keywords
Field
DocType
Laplace transforms,ad hoc networks,queueing theory,stochastic processes,Laplace transforms,connectivity distance distribution,infinite server queue,stochastic ordering,vehivehicular ad hoc networks,Connectivity distance,highway,infinite server queue,platoon size,stochastic ordering,vehicular ad hoc networks (VANETs)
Traffic flow,Three-phase traffic theory,Platoon,Computer science,Stochastic process,Computer network,Queueing theory,Probability distribution,Exponential distribution,Wireless ad hoc network
Journal
Volume
Issue
ISSN
57
6
0018-9545
Citations 
PageRank 
References 
131
5.10
13
Authors
4
Search Limit
100131
Name
Order
Citations
PageRank
Saleh Yousefi123020.44
Eitan Altman25085516.73
Rachid El Azouzi387886.23
Mahmood Fathy448263.71