Title
High-Dimensional Statistical Measure for Region-of-Interest Tracking
Abstract
This paper deals with region-of-interest (ROI) tracking in video sequences. The goal is to determine in successive frames the region which best matches, in terms of a similarity measure, a ROI defined in a reference frame. Some tracking methods define similarity measures which efficiently combine several visual features into a probability density function (PDF) representation, thus building a discriminative model of the ROI. This approach implies dealing with PDFs with domains of definition of high dimension. To overcome this obstacle, a standard solution is to assume independence between the different features in order to bring out low-dimension marginal laws and/or to make some parametric assumptions on the PDFs at the cost of generality. We discard these assumptions by proposing to compute the Kullback-Leibler divergence between high-dimensional PDFs using the k th nearest neighbor framework. In consequence, the divergence is expressed directly from the samples, i.e., without explicit estimation of the underlying PDFs. As an application, we defined 5, 7, and 13-dimensional feature vectors containing color information (including pixel-based, gradient-based and patch-based) and spatial layout. The proposed procedure performs tracking allowing for translation and scaling of the ROI. Experiments show its efficiency on a movie excerpt and standard test sequences selected for the specific conditions they exhibit: partial occlusions, variations of luminance, noise, and complex motion.
Year
DOI
Venue
2009
10.1109/TIP.2009.2015158
IEEE Transactions on Image Processing
Keywords
Field
DocType
image sequences,parameter estimation,probability,statistical analysis,tracking,K-th nearest neighbor,Kullback-Leibler divergence,high-dimensional statistical measure,low-dimension marginal laws,nonparametric estimation,probability density function,reference frame,region-of-interest tracking,standard test sequences,video sequences,$k$th nearest neighbor,High-dimensional probability density function (PDF),Kullback–Leibler divergence,nonparametric estimation,region-of-interest (ROI) tracking
Reference frame,Similitude,Feature vector,Pattern recognition,Similarity measure,Parametric statistics,Artificial intelligence,Region of interest,Estimation theory,Mathematics,Kullback–Leibler divergence
Journal
Volume
Issue
ISSN
18
6
1057-7149
Citations 
PageRank 
References 
8
0.64
27
Authors
3
Name
Order
Citations
PageRank
Sylvain Boltz1465.61
Eric Debreuve226021.54
Michel Barlaud32317310.53