Title
Novel voltage control of 18 level multilevel inverter
Abstract
This paper presents a three-stage eighteen-level inverter design with a novel control method. The inverter consists of a series connected main high-voltage, medium-voltage and low-voltage stages. The high voltage stage is made of a three-phase, six-switch conventional inverter. The medium and low voltage stages are made of three-level inverters constructed by H-bridge units. The proposed control strategy assumes a reference input voltage vector and aims to operate the inverter in one state per sampling time to produce the nearest vector to that reference. The control concept is based on representing the reference voltage in 60°-spaced two axis coordinate system. In this system, the inverter vectors' dimensions are integer multiples of the inverter's dc voltage and the expression of the inverter's vectors in terms of its switching variables is straightforward. Consequently, the switching signals can be obtained by simple fixed-point calculations. The approach of the proposed control strategy has been presented, the transformed inverter vectors and their relation to the switching variables have been defined, and the implementation process has been described. The test results verify the effectiveness of the proposed strategy in terms of computational efficiency as well as the capability of the inverter to produce very low distorted voltage with low switching losses.
Year
DOI
Venue
2013
10.1109/ASCC.2013.6606075
ASCC
Keywords
Field
DocType
invertors,voltage control,18 level multilevel inverter,h-bridge units,inverter dc voltage,inverter vector dimensions,low distorted voltage,low switching losses,reference input voltage vector,series connected low-voltage stage,series connected main high-voltage stage,series connected medium-voltage stage,switching variables,three-level inverters,three-phase six-switch conventional inverter,converters,dsp control,multilevel inverters,pulse width modulation,vectors,topology,low voltage,switches
Inverter,Computer science,Control theory,Grid-tie inverter,Voltage reference,Voltage,Pulse-width modulation,Converters,Low voltage,High voltage
Conference
ISSN
ISBN
Citations 
2072-5639
978-1-4673-5767-8
0
PageRank 
References 
Authors
0.34
12
2
Name
Order
Citations
PageRank
Saad Mekhilef126.45
Kadir, M.N.A.2181.44