Title
On the Delay Distribution of Random Linear Network Coding
Abstract
A fundamental understanding of the delay behavior of network coding is key towards its successful application in real-time applications with strict message deadlines. Previous contributions focused mostly on the average decoding delay, which although useful in various scenarios of interest is not sufficient for providing worst-case delay guarantees. To overcome this challenge, we investigate the entire delay distribution of random linear network coding for any field size and arbitrary number of encoded symbols (or generation size). By introducing a Markov chain model we are able to obtain a complete solution for the erasure broadcast channel with two receivers. A comparison with Automatic Repeat reQuest (ARQ) with perfect feedback, round robin scheduling and a class of fountain codes reveals that network coding on GF(24) offers the best delay performance for two receivers. We also conclude that GF(2) induces a heavy tail in the delay distribution, which implies that network coding based on XOR operations although simple to implement bears a relevant cost in terms of worst-case delay. For the case of three receivers, which is mathematically challenging, we propose a brute-force methodology that gives the delay distribution of network coding for small generations and field size up to GF(24).
Year
DOI
Venue
2011
10.1109/JSAC.2011.110518
IEEE Journal on Selected Areas in Communications
Keywords
Field
DocType
Receivers,Delay,Markov processes,Network coding,Decoding,Encoding,Automatic repeat request
Linear network coding,End-to-end delay,Network delay,Computer science,Fountain code,Queuing delay,Transmission delay,Computer network,Real-time computing,Elmore delay,Processing delay
Journal
Volume
Issue
ISSN
29
5
0733-8716
Citations 
PageRank 
References 
35
1.57
10
Authors
5
Name
Order
Citations
PageRank
Maricica Nistor1423.42
Daniel Enrique Lucani221718.06
T. T. V. Vinhoza319413.52
Rui A. Costa41036.71
João Barros52087126.60