Title
Memristors Empower Spiking Neurons With Stochasticity
Abstract
Recent theoretical studies have shown that probabilistic spiking can be interpreted as learning and inference in cortical microcircuits. This interpretation creates new opportunities for building neuromorphic systems driven by probabilistic learning algorithms. However, such systems must have two crucial features: 1) the neurons should follow a specific behavioral model, and 2) stochastic spiking should be implemented efficiently for it to be scalable. This paper proposes a memristor-based stochastically spiking neuron that fulfills these requirements. First, the analytical model of the memristor is enhanced so it can capture the behavioral stochasticity consistent with experimentally observed phenomena. The switching behavior of the memristor model is demonstrated to be akin to the firing of the stochastic spike response neuron model, the primary building block for probabilistic algorithms in spiking neural networks. Furthermore, the paper proposes a neural soma circuit that utilizes the intrinsic nondeterminism of memristive switching for efficient spike generation. The simulations and analysis of the behavior of a single stochastic neuron and a winner-take-all network built of such neurons and trained on handwritten digits confirm that the circuit can be used for building probabilistic sampling and pattern adaptation machinery in spiking networks. The findings constitute an important step towards scalable and efficient probabilistic neuromorphic platforms.
Year
DOI
Venue
2015
10.1109/JETCAS.2015.2435512
IEEE Journal on Emerging and Selected Topics in Circuits and Systems
Keywords
Field
DocType
neuromorphic systems,probabilistic inference,probabilistic learning,spiking neurons,stochastic computing,stochastic memristors,winner-take-all
Memristor,Biological neuron model,Computer science,Neuromorphic engineering,Probabilistic analysis of algorithms,Theoretical computer science,Artificial intelligence,Probabilistic logic,Spiking neural network,Winner-take-all,Stochastic computing
Journal
Volume
Issue
ISSN
5
2
2156-3357
Citations 
PageRank 
References 
14
0.63
23
Authors
4
Name
Order
Citations
PageRank
Maruan Al-Shedivat1969.97
Rawan Naous2435.54
Gert Cauwenberghs31262167.20
Khaled N. Salama434546.11