Title
Fluorescent silicate materials for the detection of paraoxon.
Abstract
Porphyrins are a family of highly conjugated molecules that strongly absorb visible light and fluoresce intensely. These molecules are sensitive to changes in their immediate environment and have been widely described for optical detection applications. Surfactant-templated organosilicate materials have been described for the semi-selective adsorption of small molecule contaminants. These structures offer high surface areas and large pore volumes within an organized framework. The organic bridging groups in the materials can be altered to provide varied binding characteristics. This effort seeks to utilize the tunable binding selectivity, high surface area, and low materials density of these highly ordered pore networks and to combine them with the unique spectrophotometric properties of porphyrins. In the porphyrin-embedded materials (PEMs), the organosilicate scaffold stabilizes the porphyrin and facilitates optimal orientation of porphyrin and target. The materials can be stored under ambient conditions and offer exceptional shelf-life. Here, we report on the design of PEMs with specificity for organophosphates and compounds of similar structure.
Year
DOI
Venue
2010
10.3390/s100302315
SENSORS
Keywords
Field
DocType
mesoporous,organosilica,fluorescence,porphyrin,hierarchical,detection,organophosphate
Nanotechnology,Analytical chemistry,Inorganic chemistry,Molecule,Fluorescence,Small molecule,Mesoporous material,Visible spectrum,Adsorption,Engineering,Porphyrin,Conjugated system
Journal
Volume
Issue
ISSN
10
3
1424-8220
Citations 
PageRank 
References 
2
0.56
0
Authors
8