Title
Performance Study of a Near Maximum Likelihood Code-Aided Timing Recovery Technique
Abstract
In this paper, we propose a new code-aided (CA) timing recovery algorithm for various linear constant modulus constellations based on the Maximum Likelihood (ML) estimator. The first contribution is the derivation of a soft estimator expression of the transmitted symbol instead of its true or hard estimated value which is fed into the timing error detector (TED) equation. The proposed expression includes the Log-Likelihood Ratios (LLRs) obtained from a turbo decoder. Our results show that the proposed CA approach achieves almost as good results as the data-aided (DA) approach over a large interval of SNR values while achieving a higher spectral efficiency. We also derive the corresponding CA Cramer Rao Bounds (CRB) for various modulation orders. Contrarily to former work, we develop here the CRB analytical expression for different -PSK modulation orders and validate them through comparison to empirical CRB obtained by Monte Carlo iterations. The proposed CA estimator realizes an important gain over the nondata-aided approach (NDA) and achieves a smaller gap when compared to its relative CA CRB, especially at moderate SNR values where modern systems are constrained to work.
Year
DOI
Venue
2016
10.1109/TSP.2015.2489602
Signal Processing, IEEE Transactions
Keywords
Field
DocType
Cramer-Rao bound,Time synchronization,turbo decoder
Cramér–Rao bound,Monte Carlo method,Control theory,Algorithm,Modulation,Spectral efficiency,Decoding methods,Statistics,Detector,Mathematics,Phase-shift keying,Estimator
Journal
Volume
Issue
ISSN
64
3
1053-587X
Citations 
PageRank 
References 
6
0.49
18
Authors
4
Name
Order
Citations
PageRank
Imen Nasr1112.71
Benoit Geller228918.05
Leïla Najjar Atallah3245.55
Sofiane Cherif4102.39