Title
Facing energy-aware scheduling: a multi-objective extension of a scheduling support system for improving energy efficiency in a moulding industry
Abstract
Abstract Nowadays most industries do not integrate product, process and energy data. Costs due to energy consumption are often considered externalities and energy efficiency is not deemed a relevant performance criterion. In energy-intensive processes, as injection moulding, the specific energy consumption, embedded inside the same products, depends on the machine–product combinations. Multi-objective scheduling, including the energy data acquired from shop floor and allocation criteria, is a valuable approach to improve energy efficiency. This paper presents the extension of a commercial detailed scheduling support system developed within a regional Italian project aiming at providing tools to manufacturing industry for improving energy efficiency. The project designed a monitoring system developed by instrumenting injection moulding presses to acquire the energy consumption for each product–machine combination. The commercial scheduling system was extended by implementing a multi-objective metaheuristic scheduling approach. The experimental assessment of the proposed approach involved a major producer of plastic dispensers. The extended algorithm simultaneously optimizes the total weighted tardiness, the total setup and the energy consumption costs. The obtained results, produced for a real test case and a set of random generated instances, show the effectiveness of the proposed approach.
Year
DOI
Venue
2017
10.1007/s00500-015-1987-8
Soft Computing - A Fusion of Foundations, Methodologies and Applications
Keywords
Field
DocType
Scheduling,Energy efficiency,Metaheuristics,Injection moulding
Mathematical optimization,Specific energy,Tardiness,Industrial engineering,Fair-share scheduling,Efficient energy use,Scheduling (computing),Simulation,Computer science,Dynamic priority scheduling,Energy consumption,Metaheuristic
Journal
Volume
Issue
ISSN
21
13
1432-7643
Citations 
PageRank 
References 
1
0.41
6
Authors
3
Name
Order
Citations
PageRank
Massimo Paolucci14573423.28
Davide Anghinolfi214111.81
Flavio Tonelli321.48