Title
Validation of CBCT for the computation of textural biomarkers
Abstract
Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr-CBCT) and mu CT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in mu CT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using mu CT and hr-CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of mu CT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of mu CT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in mu CT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with mu CT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA.
Year
DOI
Venue
2015
10.1117/12.2081859
Proceedings of SPIE
Keywords
Field
DocType
Temporomandibular joint,Osteoarthritis,subchondral bone,texture analysis
Condylectomies,Nuclear medicine,Computer vision,Condyle,Osteoarthritis,TMJ disorders,Biomarker (medicine),Temporomandibular joint,Artificial intelligence,Positive correlation,Physics
Conference
Volume
ISSN
Citations 
9417
0277-786X
0
PageRank 
References 
Authors
0.34
4
6
Name
Order
Citations
PageRank
Beatriz Paniagua13414.25
Ruellas Antonio C222.08
Erika Benavides311.72
steve marron400.34
larry m wolford500.68
Cevidanes, L.601.01