Title
What Makes A Neural Code Convex?
Abstract
Neural codes allow the brain to represent, process, and store information about the world. Combinatorial codes, comprised of binary patterns of neural activity, encode information via the collective behavior of populations of neurons. A code is called convex if its codewords correspond to regions defined by an arrangement of convex open sets in Euclidean space. Convex codes have been observed experimentally in many brain areas, including sensory cortices and the hippocampus, where neurons exhibit convex receptive fields. What makes a neural code convex? That is, how can we tell from the intrinsic structure of a code if there exists a corresponding arrangement of convex open sets? In this work, we provide a complete characterization of local obstructions to convexity. This motivates us to define max intersection-complete codes, a family guaranteed to have no local obstructions. We then show how our characterization enables one to use free resolutions of Stanley Reisner ideals in order to detect violations of convexity. Taken together, these results provide a significant advance in our understanding of the intrinsic combinatorial properties of convex codes.
Year
DOI
Venue
2017
10.1137/16M1073170
SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY
Keywords
DocType
Volume
neural coding, convex codes, simplicial complex, link, Nerve lemma, Hochster's formula
Journal
1
Issue
ISSN
Citations 
1
2470-6566
8
PageRank 
References 
Authors
1.57
4
8
Name
Order
Citations
PageRank
Carina Curto1567.29
Elizabeth Gross2184.21
jack jeffries381.57
Katherine Morrison4496.20
Mohamed Omar593.98
zvi rosen682.24
Anne Shiu78714.47
nora youngs8103.07