Title
Voxel-level reproducibility assessment of modality independent elastography in a pre-clinical murine model
Abstract
Changes in tissue mechanical properties, measured non-invasively by elastography methods, have been shown to be an important diagnostic tool, particularly for cancer. Tissue elasticity information, tracked over the course of therapy, may be an important prognostic indicator of tumor response to treatment. While many elastography techniques exist, this work reports on the use of a novel form of elastography that uses image texture to reconstruct elastic property distributions in tissue (i.e., a modality independent elastography (MIE) method) within the context of a pre-clinical breast cancer system.(1,2) The elasticity results have previously shown good correlation with independent mechanical testing.(1) Furthermore, MIE has been successfully utilized to localize and characterize lesions in both phantom experiments and simulation experiments with clinical data.(2,3) However, the reproducibility of this method has not been characterized in previous work. The goal of this study is to evaluate voxel-level reproducibility of MIE in a pre-clinical model of breast cancer. Bland-Altman analysis of co-registered repeat MIE scans in this preliminary study showed a reproducibility index of 24.7% (scaled to a percent of maximum stiffness) at the voxel level. As opposed to many reports in the magnetic resonance elastography (MRE) literature that speak to reproducibility measures of the bulk organ, these results establish MIE reproducibility at the voxel level; i.e., the reproducibility of locally-defined mechanical property measurements throughout the tumor volume.
Year
DOI
Venue
2015
10.1117/12.2082230
Proceedings of SPIE
Keywords
Field
DocType
elastography,reproducibility,computational modeling,MRI,breast cancer,pre-clinical,mechanical properties
Biomedical engineering,Voxel,Reproducibility,Breast cancer,Imaging phantom,Artificial intelligence,Elastography,Computer vision,Magnetic resonance elastography,Tissue elasticity,Image texture,Medical physics,Physics
Conference
Volume
ISSN
Citations 
9417
0277-786X
0
PageRank 
References 
Authors
0.34
3
4
Name
Order
Citations
PageRank
katelyn m flint100.34
Jared A. Weis2135.70
Thomas E. Yankeelov3207.14
Michael I. Miga456772.99