Title
Discriminative Boosting Algorithm for Diversified Front-End Phonotactic Language Recognition
Abstract
Currently, phonotactic spoken language recognition (SLR) and acoustic SLR systems are widely used language recognition systems. Parallel phone recognition followed by vector space modeling (PPRVSM) is one typical phonotactic system for spoken language recognition. To achieve better performance, researchers assumed to extract more complementary information of the training data using phone recognizers trained for multiple language-specific phone recognizers, different acoustic models and acoustic features. These methods achieve good performance but usually compute at high computational cost and only using complementary information of the training data. In this paper, we explore a novel approach to discriminative vector space model (VSM) training by using a boosting framework to use the discriminative information of test data effectively, in which an ensemble of VSMs is trained sequentially. The effectiveness of our boosting variation comes from the emphasis on working with the high confidence test data to achieve discriminatively trained models. Our variant of boosting also includes utilizing original training data in VSM training. The discriminative boosting algorithm (DBA) is applied to the National Institute of Standards and Technology (NIST) language recognition evaluation (LRE) 2009 task and show performance improvements. The experimental results demonstrate that the proposed DBA shows 1.8 %, 11.72 % and 15.35 % relative reduction for 30s, 10s and 3s test utterances in equal error rate (EER) than baseline system.
Year
DOI
Venue
2016
10.1007/s11265-015-1017-1
Journal of Signal Processing Systems
Keywords
Field
DocType
Language recognition,Discriminative boosting algorithm (DBA)
Computer science,Word error rate,Speech recognition,Phone,NIST,Boosting (machine learning),Artificial intelligence,Test data,Vector space model,Discriminative model,Machine learning,Spoken language
Journal
Volume
Issue
ISSN
82
2
1939-8018
Citations 
PageRank 
References 
0
0.34
21
Authors
5
Name
Order
Citations
PageRank
Weiwei Liu1189.82
Meng Cai2688.24
Wei-Qiang Zhang313631.22
Jia Liu427750.34
Michael T. Johnson543553.51