Title
Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer
Abstract
Automated classification of histopathology involves identification of multiple classes, including benign, cancerous, and confounder categories. The confounder tissue classes can often mimic and share attributes with both the diseased and normal tissue classes, and can be particularly difficult to identify, both manually and by automated classifiers. In the case of prostate cancer, they may be several confounding tissue types present in a biopsy sample, posing as major sources of diagnostic error for pathologists. Two common multi-class approaches are one-shot classification (OSC), where all classes are identified simultaneously, and one-versus-all (OVA), where a "target" class is distinguished from all "non-target" classes. OSC is typically unable to handle discrimination of classes of varying similarity (e.g. with images of prostate atrophy and high grade cancer), while OVA forces several heterogeneous classes into a single "non-target" class. In this work, we present a cascaded (CAS) approach to classifying prostate biopsy tissue samples, where images from different classes are grouped to maximize intra-group homogeneity while maximizing inter-group heterogeneity.We apply the CAS approach to categorize 2000 tissue samples taken from 214 patient studies into seven classes: epithelium, stroma, atrophy, prostatic intraepithelial neoplasia (PIN), and prostate cancer Gleason grades 3, 4, and 5. A series of increasingly granular binary classifiers are used to split the different tissue classes until the images have been categorized into a single unique class. Our automatically-extracted image feature set includes architectural features based on location of the nuclei within the tissue sample as well as texture features extracted on a per-pixel level. The CAS strategy yields a positive predictive value (PPV) of 0.86 in classifying the 2000 tissue images into one of 7 classes, compared with the OVA (0.77 PPV) and OSC approaches (0.76 PPV).Use of the CAS strategy increases the PPV for a multi-category classification system over two common alternative strategies. In classification problems such as histopathology, where multiple class groups exist with varying degrees of heterogeneity, the CAS system can intelligently assign class labels to objects by performing multiple binary classifications according to domain knowledge.
Year
DOI
Venue
2012
10.1186/1471-2105-13-282
BMC Bioinformatics
Keywords
Field
DocType
algorithms,bioinformatics,epithelium,microarrays
Categorization,Confounding,Biology,Histopathology,Prostate biopsy,Prostate,Prostate cancer,Bioinformatics,Neoplasm Grading,Intraepithelial neoplasia
Journal
Volume
Issue
ISSN
13
1
1471-2105
Citations 
PageRank 
References 
24
1.35
16
Authors
5
Name
Order
Citations
PageRank
Scott Doyle132721.56
Michael Feldman220414.87
Natalie Shih31057.17
John E. Tomaszewski419818.60
Anant Madabhushi51736139.21