Title
THINK Back: KNowledge-based Interpretation of High Throughput data
Abstract
Results of high throughput experiments can be challenging to interpret. Current approaches have relied on bulk processing the set of expression levels, in conjunction with easily obtained external evidence, such as co-occurrence. While such techniques can be used to reason probabilistically, they are not designed to shed light on what any individual gene, or a network of genes acting together, may be doing. Our belief is that today we have the information extraction ability and the computational power to perform more sophisticated analyses that consider the individual situation of each gene. The use of such techniques should lead to qualitatively superior results. The specific aim of this project is to develop computational techniques to generate a small number of biologically meaningful hypotheses based on observed results from high throughput microarray experiments, gene sequences, and next-generation sequences. Through the use of relevant known biomedical knowledge, as represented in published literature and public databases, we can generate meaningful hypotheses that will aide biologists to interpret their experimental data. We are currently developing novel approaches that exploit the rich information encapsulated in biological pathway graphs. Our methods perform a thorough and rigorous analysis of biological pathways, using complex factors such as the topology of the pathway graph and the frequency in which genes appear on different pathways, to provide more meaningful hypotheses to describe the biological phenomena captured by high throughput experiments, when compared to other existing methods that only consider partial information captured by biological pathways.
Year
DOI
Venue
2012
10.1186/1471-2105-13-S2-S4
BMC Bioinformatics
Keywords
Field
DocType
internet,genes,algorithms,microarrays,bioinformatics
Data mining,Computer science,Information extraction,Software,Throughput,Bioinformatics,Genetics,The Internet
Journal
Volume
Issue
ISSN
13
S2
1471-2105
Citations 
PageRank 
References 
1
0.35
10
Authors
5
Name
Order
Citations
PageRank
Fernando Farfán1374.13
Jun Ma23214.39
Maureen A. Sartor315610.06
George Michailidis430335.19
H. V. Jagadish5111412495.67