Title
A NEW NYQUIST-BASED TECHNIQUE FOR TUNING ROBUST DECENTRALIZED CONTROLLERS
Abstract
An original Nyquist-based frequency domain robust decentralized controller (DC) design technique for robust stability and guaranteed nominal performance is proposed, applicable for continuous-time uncertain systems described by a set of transfer function matrices. To provide nominal performance, interactions are included in individual design using one selected characteristic locus of the interaction matrix, used to reshape frequency responses of decoupled subsystems; such modified subsystems axe termed "equivalent subsystems". Local controllers of equivalent subsystems independently tuned for stability and specified feasible performance constitute the decentralized controller guaranteeing specified performance of the full system. To guarantee robust stability, the M - Delta stability conditions axe derived. Unlike standard robust approaches, the proposed technique considers full nominal model, thus reducing conservativeness of resulting robust stability conditions. The developed frequency domain design procedure is graphical, interactive and insightful. A case study providing a step-by-step robust DC design for the Quadruple Tank Process [8] is included.
Year
Venue
Keywords
2009
KYBERNETIKA
multivariable system,decentralized controller,frequency domain,independent design,robust stability,unstructured uncertainty
DocType
Volume
Issue
Journal
45
1
ISSN
Citations 
PageRank 
0023-5954
2
0.77
References 
Authors
2
3
Name
Order
Citations
PageRank
Alena Kozá Ková142.62
Vojtech Veselý25813.39
Jakub Osuský320.77