Title
Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances.
Abstract
Uniaxial compressive strength (UCS) of rock is crucial for any type of projects constructed in/on rock mass. The test that is conducted to measure the UCS of rock is expensive, time consuming and having sample restriction. For this reason, the UCS of rock may be estimated using simple rock tests such as point load index (I s(50)), Schmidt hammer (R n) and p-wave velocity (V p) tests. To estimate the UCS of granitic rock as a function of relevant rock properties like R n, p-wave and I s(50), the rock cores were collected from the face of the Pahang–Selangor fresh water tunnel in Malaysia. Afterwards, 124 samples are prepared and tested in accordance with relevant standards and the dataset is obtained. Further an established dataset is used for estimating the UCS of rock via three-nonlinear prediction tools, namely non-linear multiple regression (NLMR), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). After conducting the mentioned models, considering several performance indices including coefficient of determination (R 2), variance account for and root mean squared error and also using simple ranking procedure, the models were examined and the best prediction model was selected. It is concluded that the R 2 equal to 0.951 for testing dataset suggests the superiority of the ANFIS model, while these values are 0.651 and 0.886 for NLMR and ANN techniques, respectively. The results pointed out that the ANFIS model can be used for predicting UCS of rocks with higher capacity in comparison with others. However, the developed model may be useful at a preliminary stage of design; it should be used with caution and only for the specified rock types.
Year
DOI
Venue
2016
10.1007/s00366-015-0410-5
Engineering with Computers
Keywords
Field
DocType
Uniaxial compressive strength, Granite, Non-linear multiple regression, Artificial neural network, Adaptive neuro-fuzzy inference system
Geotechnical engineering,Mathematical optimization,Rock mass classification,Compressive strength,Adaptive neuro fuzzy inference system,Artificial neural network,Non linear prediction,Granitic rock,Mathematics
Journal
Volume
Issue
ISSN
32
2
1435-5663
Citations 
PageRank 
References 
13
0.79
14
Authors
5
Name
Order
Citations
PageRank
danial jahed armaghani158536.46
Edy Tonnizam Mohamad218110.85
mohsen hajihassani3665.13
S. Yagiz4705.59
Hossein Motaghedi5130.79