Title
The Effects of Varying the Timing of Inputs on a Neural Oscillator
Abstract
The gastric mill network of the crab Cancer borealis is an oscillatory neural network with frequency similar to 0.1 Hz. Oscillations in this network require neuromodulatory synaptic inputs as well as rhythmic inputs from the faster (similar to 1 Hz) pyloric neural oscillator. We study how the frequency of the gastric mill network is determined when it receives rhythmic input from two different sources but where the timing of these inputs may differ. We find that over a certain range of the time difference one of the two rhythmic inputs plays no role what so ever in determining the network frequency, while in another range, both inputs work together to determine the frequency. The existence and stability of periodic solutions to model sets of equations are obtained analytically using geometric singular perturbation theory. The results are validated through numerical simulations. Comparisons to experiments are also presented.
Year
DOI
Venue
2006
10.1137/050625795
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS
Keywords
Field
DocType
synapse,stomatogastric ganglion,periodic orbit,Poincare map
Oscillation,Poincaré map,Control theory,Singular perturbation,Time difference,Artificial neural network,Periodic orbits,Rhythm,Periodic graph (geometry),Mathematics
Journal
Volume
Issue
ISSN
5
1
1536-0040
Citations 
PageRank 
References 
3
0.68
3
Authors
3
Name
Order
Citations
PageRank
Christina Ambrosio-Mouser130.68
Farzan Nadim26820.17
Amitabha Bose35617.79