Title
Uplink Energy-Delay Trade-off under Optimized Relay Placement in Cellular Networks
Abstract
Relay nodes-enhanced architectures are deemed a viable solution to enhance coverage and capacity of nowadays cellular networks. Besides a number of desirable features, these architectures reduce the average distance between users and network nodes, thus allowing for battery savings for users transmitting on the uplink. In this paper, we investigate the extent of these savings, by optimizing relay nodes deployment in terms of uplink energy consumption per transmitted bit, while taking into account a minimum uplink average user delay that has to be guaranteed. A novel performance evaluation framework for uplink relay networks is first proposed to study this energy-delay trade-off. A simulated annealing is then run to find an optimized relay placement solution under a delay constraint; exterior penalty functions are used in order to deal with a difficult energy landscape, in particular when the constraint is tight. Finally, results show that relay nodes deployment consistently improve users uplink energy efficiency, under a wide range of traffic conditions and that relays are particularly efficient in non-uniform traffic scenarios.
Year
DOI
Venue
2015
10.1109/TMC.2015.2496960
IEEE Trans. Mob. Comput.
Keywords
Field
DocType
Delays,Uplink,Interference,Relays,Energy consumption,Signal to noise ratio,Optimization
Simulated annealing,Relay channel,Computer science,Efficient energy use,Computer network,Node (networking),Cellular network,Energy consumption,Relay,Distributed computing,Telecommunications link
Journal
Volume
Issue
ISSN
abs/1505.00921
9
1536-1233
Citations 
PageRank 
References 
3
0.39
33
Authors
6
Name
Order
Citations
PageRank
Mattia Minelli1292.76
Maode Ma21255163.24
Marceau Coupechoux340248.44
Jean-Marc Kelif49111.52
Marc Sigelle531634.12
Philippe Godlewski636749.91