Title
Numerical simulation of skin transport using Parareal.
Abstract
In silico investigation of skin permeation is an important but also computationally demanding problem. To resolve all scales involved in full detail will not only require exascale computing capacities but also suitable parallel algorithms. This article investigates the applicability of the time-parallel Parareal algorithm to a brick and mortar setup, a precursory problem to skin permeation. The C++ library Lib4PrM implementing Parareal is combined with the UG4 simulation framework, which provides the spatial discretization and parallelization. The combination's performance is studied with respect to convergence and speedup. It is confirmed that anisotropies in the domain and jumps in diffusion coefficients only have a minor impact on Parareal's convergence. The influence of load imbalances in time due to differences in number of iterations required by the spatial solver as well as spatio-temporal weak scaling is discussed.
Year
DOI
Venue
2015
10.1007/s00791-015-0246-y
Computat. and Visualiz. in Science
Keywords
Field
DocType
Skin transport, Parareal, Space–time parallelism, Weak scaling, Load balancing
Exascale computing,Convergence (routing),Discretization,Mathematical optimization,Computer simulation,Parareal,Computer science,Parallel algorithm,Solver,Speedup
Journal
Volume
Issue
ISSN
abs/1502.03645
2
1433-0369
Citations 
PageRank 
References 
4
0.46
12
Authors
6
Name
Order
Citations
PageRank
andreas kreienbuehl140.80
Arne Nägel2223.62
Daniel Ruprecht37110.02
Robert Speck4525.86
Gabriel Wittum540.46
Rolf Krause612622.96