Title
Energy Resilience Modelling for Smart Houses
Abstract
The use of renewable energy in houses and neighbourhoods is very much governed by national legislation and has recently led to enormous changes in the energy market and poses a serious threat to the stability of the grid at peak production times. One of the approaches towards a more balanced grid is, e.g., taken by the German government by subsidizing local storage for solar power. While the main interest of the energy operator and the government is to balance the grid, thereby ensuring its stability, the main interest of the client is twofold: the total cost for electricity should be as low as possible and the house should be as resilient as possible in the presence of power outages. Using local battery storage can help to overcome the effects of power outages. However, the resulting resilience highly depends on the battery usage strategy employed by the controller, taking into account the state of charge of the battery. We present a Hybrid Petri net model of a house (that is mainly powered by solar energy) with a local storage unit, and analyse the impact of different battery usage strategies on its resilience for different production and consumption patterns. Our analysis shows that there is a direct relationship between resilience and flexibility, since increased resilience, i.e., reserving battery capacity for backup, decreases the flexibility of the storage unit.
Year
DOI
Venue
2015
10.1109/DSN.2015.31
2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Keywords
DocType
ISSN
smart grid,resilience,survivability,Hybrid Petri nets
Conference
1530-0889
Citations 
PageRank 
References 
7
0.61
14
Authors
4
Name
Order
Citations
PageRank
Hamed Ghasemieh1595.96
Boudewijn R. Haverkort21205117.45
Marijn R. Jongerden3938.94
Anne Remke417523.96