Title
Tighter Fourier Transform Lower Bounds
Abstract
The Fourier Transform is one of the most important linear transformations used in science and engineering. Cooley and Tukey's Fast Fourier Transform (FFT) from 1964 is a method for computing this transformation in time O(n log n). Achieving a matching lower bound in a reasonable computational model is one of the most important open problems in theoretical computer science. In 2014, improving on his previous work, Ailon showed that if an algorithm speeds up the FFT by a factor of b = b(n) >= 1, then it must rely on computing, as an intermediate "bottleneck" step, a linear mapping of the input with condition number Omega(b(n)). Our main result shows that a factor b speedup implies existence of not just one but Omega(n) b-ill conditioned bottlenecks occurring at Omega(n) different steps, each causing information from independent (orthogonal) components of the input to either overflow or underflow. This provides further evidence that beating FFT is hard. Our result also gives the first quantitative tradeoff between computation speed and information loss in Fourier computation on fixed word size architectures. The main technical result is an entropy analysis of the Fourier transform under transformations of low trace, which is interesting in its own right.
Year
DOI
Venue
2015
10.1007/978-3-662-47672-7_2
Lecture Notes in Computer Science
Field
DocType
Volume
Discrete mathematics,Binary logarithm,Combinatorics,Condition number,Computer science,Upper and lower bounds,Fourier transform,Fast Fourier transform,Linear map,Restricted isometry property,Speedup
Conference
9134
ISSN
Citations 
PageRank 
0302-9743
1
0.38
References 
Authors
12
1
Name
Order
Citations
PageRank
Nir Ailon1111470.74