Title
Mitochondrial variation and the risk of age-related macular degeneration across diverse populations.
Abstract
Substantial progress has been made in identifying susceptibility variants for age-related macular degeneration (AMD). The majority of research to identify genetic variants associated with AMD has focused on nuclear genetic variation. While there is some evidence that mitochondrial genetic variation contributes to AMD susceptibility, to date, these studies have been limited to populations of European descent resulting in a lack of data in diverse populations. A major goal of the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study is to describe the underlying genetic architecture of common, complex diseases across diverse populations. This present study sought to determine if mitochondrial genetic variation influences risk of AMD across diverse populations. We performed a genetic association study to investigate the contribution of mitochondrial DNA variation to AMD risk. We accessed samples from the National Health and Nutrition Examination Surveys, a U.S population-based, cross-sectional survey collected without regard to health status. AMD cases and controls were selected from the Third NHANES and NHANES 2007-2008 datasets which include non-Hispanic whites, non-Hispanic blacks, and Mexican Americans. AMD cases were defined as those > 60 years of age with early/late AMD, as determined by fundus photography. Targeted genotyping was performed for 63 mitochondrial SNPs and participants were then classified into mitochondrial haplogroups. We used logistic regression assuming a dominant genetic model adjusting for age, sex, body mass index, and smoking status (ever vs. never). Regressions and meta-analyses were performed for individual SNPs and mitochondrial haplogroups J, T, and U. We identified five SNPs associated with AMD in Mexican Americans at p < 0.05, including three located in the control region (mt16111, mt16362, and mt16319), one in MT-RNR2 (mt1736), and one in MT-ND4 (mt12007). No mitochondrial variant or haplogroup was significantly associated in non-Hispanic blacks or non-Hispanic whites in the final meta-analysis. This study provides further evidence that mitochondrial variation plays a role in susceptibility to AMD and contributes to the knowledge of the genetic architecture of AMD in Mexican Americans.
Year
Venue
Field
2015
Biocomputing-Pacific Symposium on Biocomputing
Genetic architecture,Demography,Case-control study,Biology,Haplogroup,Genetic variation,Haplotype,Genetic association,Mitochondrial DNA,Single-nucleotide polymorphism,Genetics
DocType
ISSN
Citations 
Conference
2335-6936
0
PageRank 
References 
Authors
0.34
0
6