Title
Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks
Abstract
Learning representative computational models from medical imaging data requires large training data sets. Often, voxel-level annotation is unfeasible for sufficient amounts of data. An alternative to manual annotation, is to use the enormous amount of knowledge encoded in imaging data and corresponding reports generated during clinical routine. Weakly supervised learning approaches can link volume-level labels to image content but suffer from the typical label distributions in medical imaging data where only a small part consists of clinically relevant abnormal structures. In this paper we propose to use a semantic representation of clinical reports as a learning target that is predicted from imaging data by a convolutional neural network. We demonstrate how we can learn accurate voxel-level classifiers based on weak volume-level semantic descriptions on a set of 157 optical coherence tomography (OCT) volumes. We specifically show how semantic information increases classification accuracy for intraretinal cystoid fluid (IRC), subretinal fluid (SRF) and normal retinal tissue, and how the learning algorithm links semantic concepts to image content and geometry.
Year
DOI
Venue
2015
10.1007/978-3-319-19992-4_34
IPMI
Field
DocType
Volume
Optical coherence tomography,Annotation,Medical imaging,Computer science,Convolutional neural network,Manual annotation,Image content,Supervised learning,Computational model,Artificial intelligence,Machine learning
Conference
24
ISSN
Citations 
PageRank 
1011-2499
13
0.77
References 
Authors
14
5
Name
Order
Citations
PageRank
Thomas Schlegl1805.44
Sebastian Waldstein2808.52
Wolf-Dieter Vogl3203.34
Ursula Schmidt-Erfurth49011.43
Georg Langs564857.73