Title
Sparse Imaging For Fast Electron Microscopy
Abstract
Scanning electron microscopes (SEMs) are used in neuroscience and materials science to image centimeters of sample area at nanometer scales. Since imaging rates are in large part SNR-limited, large collections can lead to weeks of around-the-clock imaging time. To increase data collection speed, we propose and demonstrate on an operational SEM a fast method to sparsely sample and reconstruct smooth images. To accurately localize the electron probe position at fast scan rates, we model the dynamics of the scan coils, and use the model to rapidly and accurately visit a randomly selected subset of pixel locations. Images are reconstructed from the undersampled data by compressed sensing inversion using image smoothness as a prior. We report image fidelity as a function of acquisition speed by comparing traditional raster to sparse imaging modes. Our approach is equally applicable to other domains of nanometer microscopy in which the time to position a probe is a limiting factor (e.g., atomic force microscopy), or in which excessive electron doses might otherwise alter the sample being observed (e.g., scanning transmission electron microscopy).
Year
DOI
Venue
2013
10.1117/12.2008313
COMPUTATIONAL IMAGING XI
Keywords
Field
DocType
scanning electron microscope, SEM, sparse reconstruction, compressed sensing
Computer vision,Electron tomography,Optics,Scanning confocal electron microscopy,Scanning capacitance microscopy,Artificial intelligence,Scanning probe microscopy,Microscopy,Scanning ion-conductance microscopy,Digital holographic microscopy,Energy filtered transmission electron microscopy,Physics
Conference
Volume
ISSN
Citations 
8657
0277-786X
9
PageRank 
References 
Authors
0.66
1
5
Name
Order
Citations
PageRank
Hyrum S. Anderson1586.84
Jovana Ilic-Helms290.66
Brandon Rohrer3608.93
Jason W Wheeler4101.59
Kurt W. Larson5151.50