Title
Automatic Optimization of Software Transactional Memory Through Linear Regression and Decision Tree.
Abstract
Software Transactional Memory (STM) is a promising paradigm that facilitates programming for shared memory multiprocessors. In STM, synchronization of accesses to the shared memory locations is fully handled by STM library and does not require any intervention by programmers. While STM eases parallel programming, it results in run-time overhead which increases execution time of certain applications. In this paper, we focus on overhead of STM and propose optimization techniques to enhance speed of STM applications. In particular, we focus on size of transaction, read-set, and write-set and show that execution time of applications significantly changes by varying these parameters. Optimizing these parameters manually is a time consuming process and requires significant labor work. We exploit Linear Regression (LR) and propose an optimization technique that decides on these parameters automatically. We further enhance this technique by using decision tree. The decision tree improves accuracy of predictions by selecting appropriate LR model for a given transaction. We evaluate our optimization techniques using a set of benchmarks from NAS and DiscoPoP benchmark suites. Our experimental results reveal that LR and decision tree together are able to improve performance of STM programs up to 54.8 %.
Year
Venue
Field
2015
ICA3PP
Software transactional memory,Decision tree,Synchronization,Shared memory,Computer science,Logistic model tree,Parallel computing,Exploit,Database transaction,Incremental decision tree
DocType
Citations 
PageRank 
Conference
1
0.38
References 
Authors
6
4
Name
Order
Citations
PageRank
Yang Xiao16317456.36
Zhen Li2324.10
Ehsan Atoofian34918.24
Ali Jannesari414920.11