Title
Ephemeral Computing and Bioinspired Optimization.
Abstract
Computational devices with significant computing power are pervasive yet often under-exploited since they are frequently idle or performing non-demanding tasks. Exploiting this power can be a cost-effective solution for solving complex computational tasks. Device-wise, this computational power can some times comprise a stable, long-lasting availability windows but it will more frequently take the form of brief, ephemeral bursts, mainly in the presence of devices “lent” voluntarily by their users. A highly dynamic and volatile computational landscape emerges from the collective contribution of numerous such devices. Algorithms consciously running on these environments require specific properties in terms of flexibility, plasticity and robustness. Bioinspired algorithms are particularly well suited to this endeavor, thanks to their intrinsic features: decentralized functioning, intrinsic parallelism, resilience, and adaptiveness. The latter is essential to exert advanced self-control on the functioning and/or structure of the algorithm. Much has been done in providing self-adaptation capabilities to these techniques, yet the science of self-? bionspired algorithms is still nascent, in particular regarding to higher-level self-adaptation, and self-management in the context of large scale optimization problems and distributed ephemeral computing technologies. Deploying bioinspired techniques on this scenario will also pave the way for the application of other techniques on this computational domain.
Year
DOI
Venue
2015
10.5220/0005628903190324
IJCCI (ECTA)
DocType
Citations 
PageRank 
Conference
2
0.41
References 
Authors
0
8