Title
Fast and Memory Optimal Low-Rank Matrix Approximation
Abstract
In this paper, we revisit the problem of constructing a near-optimal rank k approximation of a matrix M ∈ [0, l]mxn under the streaming data model where the columns of M are revealed sequentially. We present SLA (Streaming Low-rank Approximation), an algorithm that is asymptotically accurate, when ksk+1(M) = o(√mn) where sk+1(M) is the (k + 1)-th largest singular value of M. This means that its average mean-square error converges to 0 as m and n grow large (i.e., ‖M(k) - M(k)‖2F = o(mn) with high probability, where M(k) and M(k) denote the output of SLA and the optimal rank k approximation of M, respectively). Our algorithm makes one pass on the data if the columns of M are revealed in a random order, and two passes if the columns of M arrive in an arbitrary order. To reduce its memory footprint and complexity, SLA uses random sparsification, and samples each entry of M with a small probability δ. In turn, SLA is memory optimal as its required memory space scales as k(m + n), the dimension of its output. Furthermore, SLA is computationally efficient as it runs in O(δkmn) time (a constant number of operations is made for each observed entry of M), which can be as small as O(k log(m)4n) for an appropriate choice of 5 and if n ≥ m.
Year
Venue
Field
2015
Annual Conference on Neural Information Processing Systems
Mathematical optimization,Singular value,Matrix (mathematics),M/G/k queue,Low-rank approximation,Artificial intelligence,Streaming data,Memory footprint,Machine learning,Mathematics
DocType
Volume
ISSN
Conference
28
1049-5258
Citations 
PageRank 
References 
2
0.38
9
Authors
3
Name
Order
Citations
PageRank
SeYoung Yun117114.12
Marc Lelarge247539.60
A. Proutiére367351.18