Title
Distributed Software Infrastructure for Evaluating the Integration of Photovoltaic Systems in Urban Districts.
Abstract
Nowadays, the adoption of renewable energy sources distributed across the city is crucial for planning and developing the future Smart City. An accurate simulation and modelling of energy sources, such as Photovoltaic Panels (PV), is necessary to evaluate both economical and environmental benefits. With the growth of renewable sources in the city simulations of energy production became crucial for the DSO for evaluating retrofits or for network balancing events. In this paper, we present a software infrastructure for simulating the solar radiation and estimating the energy production of a district. The infrastructure simulates the PV production and evaluates the integration of such systems considering real electricity consumption data. In its core, the proposed solution models the behaviours of PV systems taking into account the digital surface of rooftops and sub-hourly meteorological data (e.g. solar radiation and temperature) to compute real-sky conditions. Then, such information is used to feed a model of the hardware components of PV systems to gain more accurate estimations of energy production in the district in real-sky conditions.
Year
DOI
Venue
2016
10.5220/0005879403570362
SMARTGREENS
Keywords
Field
DocType
Photovoltaic,GIS,Distributed Software Infrastructure,Urban Planning,Spatio-temporal Analysis,Renewable Energy Planning
Data modeling,Renewable energy,Systems engineering,Electricity,Urban planning,Software,Smart city,Energy source,Civil engineering,Engineering,Photovoltaic system
Conference
ISBN
Citations 
PageRank 
978-989-758-184-7
1
0.48
References 
Authors
3
8
Name
Order
Citations
PageRank
Lorenzo Bottaccioli1136.34
Edoardo Patti26317.17
Michelangelo Grosso321.86
Gaetano Rasconà410.82
Angelo Marotta510.82
Salvatore Rinaudo63811.36
Andrea Acquaviva746152.97
Enrico Macii82405349.96